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SLIP LINES AT ME VERTEX OF A WEDGE-LIKE CUT* 

L.A. KIPNIS and G.P. CHEPHPANOV 

The problem of the initial development of plastic deformations near a tip 
of a wedge-like cut in a homogeneous isotropic body is studied under 
conditions of plane deformation. It is assumed that the plastic 
deformations concentrate along narrow rectilinear slippage strips 
emerging from the tip of the cut. The integral Mellin transform is 
used to reduce the problem to the functional Wiener-Hopf equation, 
and its closed solution is given. An equation for determining the length 
of the slip line is derived. 

Consider a homogeneous isotropic body with a wedge-like cut. The 

e=B 

& 

material of the body is assumed to be perfectly elastoplastic. When the 
external loads are sufficiently small, the characteristic linear dimension 

r of the plastic zone near the tip of the cut of angle a will be small 

8’ compared with the characteristic dimension of the body and the cut. We 

0 L 
will assume that the plastic deformations are concentrated along the narrow 

Ll*p-* 
rectilinear slip lines emerging from the tip of the cut: Applying the 
"microscope principle" /I/ we arrive at the singular problem of the theory 
of elasticity of class N, concerning the equilibrium of an elastic wedge 

Fig.1 with the stress-free boundaries and of angle greater than n , with a recti- 
linear slip line emerging from its tip (Fig.1). 

We will write the boundary conditions for this problem as follows: 

e = i3, e = 8 - a, ce = T,e = 0; a E (n, 2s). fi E (0, a) (1) 

8 = 0, [se] = [Z&l = 0, lual = 0 

e = 0. r < I, ~,a = 7,; e = 0, r > I, b,l = 0 (2) 

Here se9 r,gl 0, are the stresses, u~,u~ are displacements, [o] is the jump in the value of a, 
and r,is the limiting shear strength. At infinity the solution of the problem behaves like a 
solution of the canonical singular problem of the theory of elasticity for a wedge fi- a<B< 

&O<r<=J with stress-free edges /l/. In particular we have 

e=o, r--m, T* = clg+ + Cngzr b-1 + 0 V/r) 

g, = +-(2+1 
a-2B 

/ (& -1) sin& - 1)~ - 

(XI - i)sin(G- l)ai2 sin(bl+ i) a-2B 
ata (&l-t- 1)e/2 2 1 

c-26 &n)~~ -((l*-l)cOs(Lz-l)~$ ga= 2 I 
(b+ i)sin (&- l)a/2 a-2f! 

sin&f l)a/2 cos (5, + 1) 2 
1 

(when n<aBa.<3rrl2 , the term correspondingto C,vanishes). Here $(a) E (Ii,. i) is a unique 
root of the equation 

sin pa - (-i)$ sin a = 0 (j = 1, 2; a, < a <2x, a, = II, a, = a.) 

in the strip O<Rep<i; a. is a unique root of the equation aeosa- sin a = 0, in the interval 
s <a <.2n(a, ~257") and Cl are arbitrary real constants. 

The constants &and c, are assumed given by the condition. The constants characterize 
the external field intensity and are found from the solution of the outer problem. The con- 
stantCi has dimension of force divided by length to the power &,(a)+ I. The solution of this 
problem represents the sum of solutions of the following two problems. The first (Problem A) 
differs from it in the fact that in place of the first condition of (2) we have 

e=o, r<l, ‘* = TI - C,g,r 2,-I - c,g+r (3) 

and the stresses decay at infinity as 0 (i/r). The second problem is a canonical singular 
uroblem for a wedce with stress-free edges. Since the solution of the second problem is known, 
L 

it remains to construct the solution for Problem A. 
Applying the integral Mellin transform (p is a complex parameter) 
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to the equation of equilibrium, 
conditions Cl), and taking into 

113 

m*(p) = m(r)? dr 
0 

condition of compatibility of deformation, Hooke's Law and 
account the second condition of (2) and condition (3), we 

arrive at the functional Wiener-Hopf equation for Problem A 

@+ (P) = fT* (PZ, 0) pPdp (4) 

1 

E 
Q-(P)=*(,_q 

l au, s[. II ar 84 PPdP 
0 -Pl 

’ (p) = [4pP (pa - 1) @ + (blAr+ + &AI+) (&AS- + &A,-)] sin pn 

6~ = sin* p9, - p* sin* 01, * A, F Sin zpej -f p Sin 26, 

d = sina pe, sin' 9S - sin* pea sin' e,, e1 = B, e, = Q - B 

(E is Young's modulus and v is Poisson's ratio). The solution of (4) is constructed in the 
same manner as those of the functional Wiener-Hopf equations for the problems discussed in 
/2, 3/. We have (P(z) is the gamma function) 

[ 

I 

@- (P) = K_(P) G- (P) (p;:;:ql)l)+& 

rjK+(-Aj) 

x,(p+kj)c+(--Aj) 3 WP>W 

*+(p)=_ “,“1’,Ip)) -.& 
1 [ 

*+- :I:-_:; ,+jjy&y [p*+ K+(--j) 1) WP<O) bjC+(- kj) 

exp i& ‘S l*dt] _(;I;;;; ;I;;; 
--Im 

We will find the stress intensity coefficient kn at the head of the slip line 
From the first formula of (5) we obtain 

Q 
@-(PI- _ (P-+00) 

VP 

rJc+ (- 1) a 
Q= c+(-i) j~l 

T .K+ (- kj) 

+ c x:c+ (- $1 

and we have the asymptotics 

Q_(P) - - * (P’W) 

(5) 

(6) 

We will use (6) and (7) to obtain the coeffic- 
ient b Equating it to the viscous slip- 

page kc, which is a given material constant, 
we obtain the following equation for determin- 
ing the length 1 of the slip line 

2 

c Lj(a,fi)C,z*J+-r,)/j: 
G-1 

=~k*,c+(-I, (8) 

L,(a B)= fi8jr(1+'j)c+(-1i) 

1 ’ uJr (l/Z + $) c+ (- ‘1) 

(when n<aga, , the term corresponding to &vanishes). 
Let us assume that the head of the slip line is free, i.e. h,=O. Let c, = 0. From 

(8) we find, for $rknc = 0, 
r*r'-Vc, = L, (a, 9) 

Fig.2 shows the dependence of J,= ~r,@lc,I on the angle fl at a=lQO, 290.2700 (curves 
1, 2 and 3 are symmetrical about the straight lines $=a/2 respectively). Following /3/ 
we assume that in a body homogeneous and isotropic with respect to its strength, the slip 
lines near the cut tip develop in the direction of the largest value of I.. Analyzing the 
relationship given we conclude that in the case in question (C,=O) the sliplineswilldevelop 
in two directions that are symmetrical about the bisector plane of the wedge. The values of 
the angle s of inclination of the slip line to the wedge edge, are given below for several 
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values of the wedge angle a 

CL, deg.= 190 210 230 250 270 290 310 330 350 
B, deg.= 50 53 60 66 70 SO 87 94 105 

Note. It was pointed out by V.K. Vostrov that for Gf (-l/J of /3/ the factor 
(1/5sin a cos a/Z)-' 

J/'Z 
should be multiplied by the inverse expression 1/y : t1 sin c( cos a/3. The numerical 

factors in (4.9) and (4.12) will now become 0.058 and 0.28 respectively (compared with the 
previous 0.046 and 0.22). 

1. 
2. 

3. 
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ON A STAR-LIKE SYSTEM OF PROPAGATING DISLOCATION DISCONTINUITIES* 

A.S. BYKOVTSEV and 2H.S. TAVBAEV 

An antiplane dynamic problem of a system of dislocation discontinuities 
propagating from the origin of coordinates and forming a star-like structure 
is considered. A displacement field is obtained and specific features of 
seismic radiation in the far zone are studied. 

Let zn dislocation discontinuities with uniform angular distribution (Fig.1) begin to 
propagate at the initial instant t= 0 from the origin of a Cartesian system of coordinates 

Gxy, with constant velocity, in an isotropic elastic medium. We define the discontinuity 
kinematically, i.e. we specify at each point of the plane of discontinuity the magnitude and 
direction of the displacement jump vector at the discontinuity, depending on the coordinates 
and time. As was shown in /l-6/, the kinematic description of the discontinuities shows in 
many cases a number of preferences as compared with the dynamic method whereby the forces are 
defined at the discontinuity. An analogous problem for the cracks using the dynamic method 
of describing the discontinuities was studied in /7/. 

We shall assume that every single dislocation discont- 
inuity is described by a symmetric (about the plane of 
discontinuity) homogeneous function of zero dimension f(pit). 
We denote by (r,, and (ryr the stress tensor components and 
by u) the unique non-zero displacement vector component 
satisfying the wave equation 

where P$'P are polar coordinates and c is the velocity of 
transverse waves. The boundary conditions are 

[ml = f (P& Pa vt 
[w] = 0. 

p,"t)~=O,$; n=1,2,3... (2) 

Fig.1 
Thus we must find a solution of problem (l), (2) belonging to the class of selfsimilarproblems 

with the selfsimilarity index (0,O). We use the Smirnov-Sobolev method /3/ of the functionally 
invariant solutions, and the general approach employed in solving such problems /9/, enabling 
us to reduce the selfsimilar problems of the dynamic theory of elasticity to the boudary 

value problems of the theory of analytic functions. 
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